14th Capacity Building Programme for Officers of Electricity Regulatory Commissions

Regulatory Approach to Tariff Setting in the Power Sector – Power Procurement and Renewable Energy

March 1 – 3, 2021 | IIT Kanpur

Organised by
Centre for Energy Regulation
Department of Industrial and Management Engineering
Indian Institute of Technology Kanpur
Sharing of Inter-State Transmission Charges and Losses) Regulations, 2020

Name: Shilpa Agarwal
Designation: Joint Chief (Engineering)
Organization: Central Electricity Regulatory Commission
Transmission Planning
Background

Development of transmission system in the country was traditionally the responsibility of the erstwhile State Electricity Boards (SEBs).

The country’s transmission networks were organised into five regional grids – North, West, South, East and NE.

Grid developed as the Associated Transmission Systems (ATS) for various generation projects. Initially, CGS like NTPC, NHPC etc. too took up the construction of ATS.

Power Grid Corporation of India (PGCIL) was created (originally NPTC) in 1988 with the objective of creating strong regional grids and subsequently a national grid.

PGCIL was entrusted with the task of building inter-state and inter-regional transmission systems.

Various Central GENCO transmission assets were transferred to PGCIL.

Role of transmission system planning for harmonious development was carried out by the Power System wing of the Central Electricity Authority (CEA).
Planning Framework (Post Electricity Act 2003)

National Electricity Policy (NEP) provides “the CEA shall prepare **short term** and **perspective plan**”
- Perspective Plan- 15yrs., 3 plan periods
- Short Term- 5yrs., 1 plan period

Transmission mandated as a licensed business.
- 2 statutory entities created & assigned roles of transmission system planning & development
 - Central Transmission Utility (CTU) & State Transmission Utility (STU).
 - CTU responsible for inter-state systems
 - STU responsible for intra-state systems
 - To start with, PGCIL has been designated as the CTU
 - The transmission wing of the erstwhile SEBs designated the STUs.
- CTU and STU also deemed licensees- build own, operate and maintain transmission systems

CTU to issue Network Plans and update plans periodically (not later than annually)
- To contain details like identified new lines and substations, system strengthening projects, broad design specs, probable line lengths and substation locations etc.

New transmission planned based on
- Requests by new generators/ application for transmission access
- Identified pockets of congestions based on feedback by RLDC/ SLDC
- Demands by States to meet their load growth

CTU identifies required Transmission based on Load Flow Studies
Planning

Generation delicensed with EA2003, private generators were encouraged
Evacuation ensured under Open Access Regulations 2004
Connectivity, Long term Access, Medium term Open Access Regulations 2009, effective from 1.1.2010

2008-Power Exchange operationalised & STOA Regulations notified
Evolution of the Grid...

Five Regional Grids
Five Frequencies
Pre – October 1991

October 1991
East and Northeast synchronized

March 2003
West synchronized
With East & Northeast

Birpara-Salakati 220 kV D/C Line

400 kV Rourkela-Raipur D/C

August 2006
North synchronized
With Central Grid

December, 2013
All India Synchronized Grid

400 kV Muzaffarpur-Gorakhpur D/C Line

765 kV Raichur-Solapur

Five Regional Grids
Two Frequencies
Post August 2006

NEW Grid

NEWS Grid

S Grid

One Frequency
Post 2013
- Hydro potential in NER and upper part of NR
- Coal reserves mainly in ER/ WR
- For optimal utilisation of resources – strong National Grid
Transmission Pricing
Mechanism for Investment consent

- Sharing of Tr. Charges based on Contracts
- Beneficiaries of Generation are **SYNONYMOUS** with Users of Tr. System
- Since Beneficiaries are identifiable their consent is obtainable
Mechanism for Investment consent... *in reality*

- Benefits of Tr. Systems are shared by all the stakeholders
Old mechanism for sharing Tr. charges

Predominantly Regional
Eg. Southern Region

Allocation
Based on entitlements (MW) of inter-state generating stations

<table>
<thead>
<tr>
<th>State</th>
<th>AP</th>
<th>KN</th>
<th>TN</th>
<th>Kerala</th>
</tr>
</thead>
</table>

Cost, Tr. Charges Plus
Rs, Rs.
Pricing under Postage Stamp (Long term User) – An Example

Exporting Region - NER
Loss 4%
TC=20

Intermediate Region - ER
Loss 4%
TC=20

Importing Region - NR
Loss 4%
TC=20

De-Pooling stn.
100 km ~ 10 ps/kwh. Loss 2%

Pooling stn.
400 km ~ 20 ps/kwh. Loss 2%

Cost of delivery
- Cost at Generator Terminals = 300 ps/kwh
- Transmission costs to load centre = 90 ps/kwh
- Cost of losses = 74.28 ps/kwh
- Final costs = 464.28 ps/kwh

• Much of the cost levels are genuine. There could even be element of cross-subsidisation of new transmission costs by existing beneficiaries
• If new line costs are loaded on to first user(s), then the cost of delivery can be prohibitive
• There could be a tendency of over-estimation of losses
• Hence the need to ensure a fairer allocation
Evolution of Transmission Pricing

Stage I
- Cost of Transmission clubbed with Generation Tariff
- Implicit

Stage II
- Apportioned on the basis of energy drawn
- (Usage Based)

Stage III
- Apportioned on the basis of MW entitlements
- (Access Based)

Stage IV
- Hybrid Methodology

Reference: राष्ट्रीय भार प्रेषण केंद्र

Upto 1991
1992-2002
2002-2011
2011 onwards
... the need for revisiting the Transmission pricing

- National Electricity Policy mandates development of a strong National Grid. require transmission prices to be *distance and direction sensitive, independent of BPTA* and *reflect the utilization of the network* by each network user

- Tariff Policy further requires that such pricing mechanism be implemented by Apr-06.

- Evolution of open access and competitive power markets
 Bilateral transactions, Px

- Pricing inefficiency in the emerging circumstances – the problem of pancaking

- Changing nature of use of the transmission system by various users-Merchant generators
Principles of sharing ISTS charges and losses-2010 Regulations

Factors to be calculated

- Point of connection charges – in terms of
 - Rs./MW/month for LT/MT access
 - paise/kwh for STOA
- Loss allocations factors
- Load flow based methods to be used for calculating above factors

PoC charges Methodology-Hybrid method & Uniform Charge Sharing Mechanism

- Hybrid Methodology: Cost Allocation through marginal usage; Slack bus identification through Average Participation Method.
- Uniform Charge Sharing Method: Present Methodology of Regional Postage Stamp Method
- For 1st 2 years- 50% charges will be recovered through Hybrid method & 50% through Uniform charge sharing method.
- After 2 years weightage to be reviewed

Data to be provided by DIC to IA by end of Nov, each year. Else Commission may authorize IA to obtain such information from alternative sources.- as per Procedure issued by NLDC

The Yearly Transmission Charge of the ISTS Licensees shall be fully and exactly recovered. There shall be periodic truing up of YTC as per actual billing.
Main components of ISTS charges-2010 Regulations

Usage based component- Hybrid method-90% of AC system

Reliability Charges- 10% of ISTS charges

HVDC charges- Billed on regions for which they were constructed- in proportion to Long term Access+ Medium term open access
Need for change

Transmission system for renewables- waiver based
Usage based component
Reliability component – quantification
HVDC – for system control
Short term open Access charges
Background
Existing Sharing Regulations- notified on 15.6.2010, effective from 1.7.2011, 6 amendments till date.

Proposed Draft Regulations- Committee under Member CERC, Sh.I.S. Jha- Report dated August 2019

Final Regulations- 4.5.2020, w.e.f 1.11.2020
Monthly Transmission Charges

<table>
<thead>
<tr>
<th>National Component (NC)</th>
<th>Regional Component (RC)</th>
<th>Transformer Component (TC)</th>
<th>AC System Component (ACC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Component-HVDC (NC-HVDC)</td>
<td>HVDC (RC-HVDC)</td>
<td>STATCOM, SVC, Bus Reactors</td>
<td>State where located</td>
</tr>
<tr>
<td>National Component-Renewable Energy (NC-RE)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Usage Based Component (AC-UBC)
National Component-Renewable Energy (NC-RE)

• Transmission system built for renewables which are covered under waiver of transmission charges to be separately billed as “National Component” in the ratio of LTA+MTOA of all DICs across the Country.

• Linewise YTC for such transmission system shall be taken at “zero cost”
 • no cost implication shall be there under usage component for such system.
National Component-HVDC (NC-HVDC)

• 30% transmission charges for HVDC bipole

• HVDC systems such as back to back are used for control function by system operator

• Biswanath Chariali-Agra HVDC system entire Yearly Transmission Charges and for Adani Mundra-Mohindergarh HVDC System, portion of Yearly Transmission Charges.

• To be shared by DICs of all India in the ratio of LTA+MTOA
Regional Component

• HVDC (RC-HVDC)- 70% of transmission charges of bipole HVDC Transmission System- to be shared by drawing DICs of receiving region & injecting DICs for LTA to target.
 • Example

• Static Compensator (STATCOM), Static VAR Compensator (SVC), Bus Reactors, and any other transmission element(s) identified by Central Transmission Utility being critical for providing stability, reliability and resilience in the grid - to be shared by DICs in the region in which these devices are located in the ratio of LTA+MTOA.
 • Drawing DICs
 • Injecting DICs- untied capacity
Transformers Component (TC)

• The transformers are planned as ISTS to cater to the drawal requirement of the State by the CTU. CTU to provide list of such transformers.
 • where the actual tariff for such transformer is not available, CTU shall provide indicative cost in such cases for billing. This cost shall be excluded from Monthly transmission charges to determine AC component transmission charges.

• If 220kV substation feeders are connected to neighbouring state such that drawal transformer is actually catering to drawl requirement of state other than the state in which transformer is located, proportionate transmission charges shall be levied to such state.
AC System Component (ACC)

- Includes AC transmission lines, AC substation, line and bus reactor and Inter-connecting transformers (excluding the drawl transformers which have been proposed to be shared by the State, SVCs, STATCOMs and such other devices which have been proposed to be shared by region in which they are located).

- Following parts:

 (i) Usage Based Component (AC-UBC); and

 (ii) Balance Component (AC-BC).
Usage Based Component

- Actual data –
 - injection / drawl for the month.
 - Lines in use

“Peak block” for the month shall be considered as the block in which sum of ISTS drawl for all States is maximum to determine utilisation component of AC transmission charges. While identifying peak block, the injection into ISTS by a State shall be ignored.
Base Case file to be prepared by Implementing Agency for the Peak Block of the month comprising of the following:

- Basic Network, which shall be the network file for the power system for the peak block of the month; and
- Actual generation and demand, in MW, at each node of the Basic Network for the Peak Block.

Apportionment of Monthly Transmission charges on per circuit kilometer basis for each voltage level and conductor configuration
Usage Based Component-Example for SIL

- Surge Impedance loading of standard transmission line at a nominal voltage to determine utilization percentage of a line.
 - A transmission line with SIL of 500 MW is carrying 300 MW in the Base case for Peak Block.
 - The transmission charges as per linewise transmission charges for such line is suppose Rs 100 Crore.
 - Then the transmission charges to be considered under AC-UBC for such a line shall be (300/500) * 100 = Rs. 60 Crore.
 - The balance Rs. 40 Crore shall be considered under AC-BC component

- Percentage usage of each transmission line to be multiplied by line-wise Monthly Transmission Charges to obtain modified line-wise transmission charges.

- Transmission charges at each node shall be calculated as per Hybrid Methodology, using modified line-wise transmission charges obtained as per clause (6) of this Regulation.
Usage Based Component-Aggregation

• Charges allocated to each node shall be aggregated for a State for nodes within the State

• Any other entity within the State with Long term Access or Medium Term Open Access to ISTS shall also be allocated charges under AC-UBC at their node.

• Such entity shall pay charges as allocated to its node and shall not be clubbed with other nodes. Charges for other components such as AC-BC, NC, RC are proposed to be allocated on LTA+MTOA and hence shall be determined directly for such entity
Balance Component-AC-BC

The transmission charges under AC system component after allocating the charges under “Usage based” component – AC-UBC shall be shared as balance component –AC-BC in the ratio of Contracted capacity of LTA and MTOA.
Sharing of transmission losses

• All India Average Transmission losses for ISTS shall be calculated by Implementing Agency for each week, from Monday to Sunday, as follows:

\[
\frac{(\text{Sum of injection into the ISTS at regional nodes for the week}) \, \text{minus} \, (\text{Sum of drawal from the ISTS at regional nodes for the week})}{\text{Sum of injection into the ISTS at regional nodes for the week}} \times 100\%
\]

• Drawal Schedule of DICs shall be worked out as per provisions of Grid Code after taking into account the transmission losses of previous week.

• No transmission loss for ISTS shall be applicable while preparing schedule for injection node including that for Collective Transactions over the Power Exchanges.
Transmission loss

• Losses are currently determined for injection nodes as well as drawl nodes. However while scheduling losses for scheduling under long term access or medium term open access is payable by drawl entities only. Currently, the losses in ISTS are calculated regionally as total loss and it is divided by 2 to determine average loss for injection and average loss for drawl which is in approximation.

For example, if total injection into ISTS is 40000 MW and total drawal from ISTS is 39500 MW, loss is 500 MW,
Average injection loss = (500/40000)*(1/2) = 0.625%
Average drawl loss = (500/40000)*(1/2) = 0.625%
Transmission charges for Short Term Open Access

(1) Short Term Open Access Rate (in paise/kWh) shall be published for each billing month by the Implementing Agency which shall be calculated State-wise as under:

Transmission charges of the State for the billing month (in rupees) / (7200 X the quantum, in MW, of Long Term Access plus Medium Term Open Access of the State for the corresponding billing period)
Transmission charges for Short Term Open Access shall be payable by generating stations and embedded entities located in the State, as per the last published Short Term Open Access Rate for the State, along with other charges or fees as per Open Access Regulations, 2008 and the Transmission Deviation charges, if any, as per these regulations.

Transmission charges for Short Term Open Access paid by an embedded intra-State entity during a month shall be reimbursed in the following billing month to the State in which such entity is located.

Transmission charges for Short Term Open Access, paid by a DIC with untied LTA shall be offset against the transmission charges payable by the said DIC for untied LTA in the following billing month.

No transmission charges for Short Term Open Access for inter-State transmission system, shall be payable by a distribution licensee which has Long Term Access or Medium Term Open Access or both, or by a trading licensee acting on behalf of such distribution licensee:

Transmission charges for Short Term Open Access collected in a billing month, after adjustment as per Clauses (3) and (4) of this Regulation, shall be reimbursed to the DICs in proportion to their share in the first bill in the following billing month.
Transmission Deviation

Transmission Deviation Rate in Rs./MW, for a State or any other DIC located in the State, for a time block during a billing month shall be computed as under:

\[
1.05 \times \left(\frac{\text{transmission charges of the State for the billing month in Rs.}}{\text{quantum in MW of Long Term Access plus Medium Term Open Access of the State for the corresponding billing period}} \times 2880 \right)
\]
Deviation

(a) For a generating station, net metered ex-bus injection, in a time block in excess of the sum of Long Term Access, Medium Term Open Access and Short Term Open Access:

(b) For a State net metered ex-bus injection or net metered drawal, in a time block, in excess of the sum of Long Term Access and Medium Term Open Access.

(c) For any drawee DIC, which is a regional entity other than distribution licensees, net metered drawal in a time block in excess of the sum of Long Term Access, Medium Term Open Access and Short Term Open Access.
Generating station with PPA

Where Generating Stations or sellers have been granted Long term Access or Medium Term Open Access and have entered into Power Purchase Agreement for supply of power under such Long Term Access or Medium Term Open Access, the transmission charges towards such Long Term Access or Medium Term Open Access shall be determined at the drawal-nodes and zone and billed to the buyer.
Timelines

Base case for the Billing month shall be prepared by the Implementing Agency by 15th day of the month following the Billing month.

Payable transmission charges shall be notified by the Implementing Agency by 25th day of the month following the Billing month.

Based on the notified allocation of charges by the Implementing Agency, Regional Power Committee Secretariat shall issue Regional Transmission Accounts by the end of the month following the Billing month.
• On or before end of the Billing Month, all entities whose assets are to be used in the Basic Network shall submit to the Implementing Agency Network data and dates of commercial operation of any new transmission asset in the Billing Month and the Yearly Transmission Charge along with circuit kilometers at each voltage level and for each conductor configuration, as approved by the Commission.

• Implementing Agency shall notify, on its website, the peak block for the Billing Month on first day of the following month.

• On or before 7 (seven) days after start of Billing Month, Central Transmission Utility shall submit indicative cost for each voltage level and conductor configuration for transmission lines to the Implementing Agency.

• On or before 7(seven) days after end of Billing Month, DICs shall submit following data:
 (a) MW and MVAR Data for injection or drawal at various nodes or a group of nodes for peak block for each Billing Month.
 (b) Quantum of power tied up through PPAs for interchange of power under long term access or approved medium term open access.
Thank You
Methods employed in arriving at Point of Connection Charges

Hybrid Method

Marginal Participation + Average Participation
Average Participation

<table>
<thead>
<tr>
<th>Area of influence</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 200MW</td>
</tr>
<tr>
<td>B 800MW</td>
</tr>
</tbody>
</table>

- $600 \times 200 = 120$ MW
- $600 \times 800 = 480$ MW
- $400 \times 800 = 320$ MW
- $400 \times 200 = 80$ MW

Average Participation
Marginal Participation

D1
600MW
(6/11)

D2
100MW
(1/11)

G2
500MW

D3
400MW
(4/11)

G1
600MW
A

+ 1MW

*Indicative only
Power flow in lines in MW
Marginal Participation

*Indicative only
Power flow in lines in MW
Marginal Participation

<table>
<thead>
<tr>
<th>Users</th>
<th>G1</th>
<th>G2</th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity</td>
<td>600 MW</td>
<td>600 MW</td>
<td>100 MW</td>
<td>500 MW</td>
<td>400 MW</td>
</tr>
<tr>
<td>MW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Identification of the slack node(s) changes the rule of the game
Transmission charges liability in case of delay of generating station

• In case of delay of generating station, it shall be liable for transmission charges of Associated Transmission System i.e Yearly Transmission charges of such transmission elements which have specifically been indicated as generator“s ATS.

• Generating stations for whose Long term Access no additional investment is required i.e there is no Associated transmission system and the Long term Access is granted on existing margins- generating station shall pay transmission charges @10% *TDR for the period of delay of the generating station.
Transmission charges liability in case of delay of upstream or downstream system

• In case either upstream or down-stream system is not ready due to which an element cannot be put in regular service, the transmission charges for such element shall be payable by owner of upstream or downstream system which is delayed. For cases where both upstream and downstream system is delayed, transmission charges for the element shall be shared by owner of upstream and downstream system in the ratio to be decided by the Commission, Transmission licensee may approach the Commission impleading owner of upstream and downstream system.
Treatment of part operationalization of generator

• CTU identifies several transmission elements to operationalize LTA for a LTA customer, however only a few elements are commissioned, then CTU should operationalize LTA partly only when LTA Customer seeks such part operationalization upto its transmission capacity.

• CTU may operationalize LTA as per availability in transmission system even without availability of full ATS, if LTA customer seeks such operationalisation and vice versa.

• Where some of transmission elements of ATS have been commissioned and LTA customer has sought part or full operationalization of LTA, once the LTA for such LTA Customer is operationalized, the elements of ATS which have achieved COD with regular service shall be included in ISTS pool for recovery under Regulation 5 to Regulation 8 of Draft Sharing Regulations 2019.
Event of Default

- The occurrence and continuation of the following events shall constitute a DIC Event of Default:
 - A DIC fails to comply with the prevailing regulations including the provisions of the Central Electricity Regulatory Commission (Indian Electricity Grid Code) Regulations, 2010 as amended from time to time including any subsequent re-enactment thereof or is in material breach of these Regulations and such material breach is not rectified by the said DIC within 60 (sixty) days of receipt of notice in this regard from the concerned inter-State Transmission Licensee or the Central Transmission Utility; or
 - DIC fails to make payments against bills raised by the Central Transmission Utility under these Regulations within 60 days beyond Due Date.
- Upon the occurrence and continuance of a DIC Event of Default, the Central Transmission Utility may serve notice on the concerned DIC, specifying the circumstances giving rise to such Notice.
Following the issue of such notice by the DIC, the concerned DIC shall take steps to remedy the default within 60 (sixty) days of issue of such notice.

After the expiry of 60 (sixty) days from the date of issue of notice, unless the circumstances giving rise to such notice as mentioned in clause (1) of this regulation shall have ceased to exist or have been remedied, the concerned DIC shall cease to be a DIC under these Regulations and the Central Transmission Utility shall issue a Termination Notice of 30 (thirty) days to this effect with a copy to the Commission and the Implementing Agency.

Long Term Access or Medium Term Open Access or both of such entity shall be cancelled. Such cancellation shall be treated as relinquishment

Upon termination of the status of DIC, the entity shall not be eligible for interchange of power under any form of open access unless such entity remedies the default and makes payment of all outstanding charges including relinquishment charges.
<table>
<thead>
<tr>
<th>Region</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>3.28</td>
<td>3.03</td>
<td>2.78</td>
<td>2.53</td>
<td>2.28</td>
<td>2.03</td>
<td>1.78</td>
<td>1.53</td>
<td>1.28</td>
</tr>
<tr>
<td>WR</td>
<td>2.45</td>
<td>2.2</td>
<td>1.95</td>
<td>1.7</td>
<td>1.45</td>
<td>1.2</td>
<td>0.95</td>
<td>0.7</td>
<td>0.45</td>
</tr>
<tr>
<td>ER</td>
<td>1.74</td>
<td>1.49</td>
<td>1.24</td>
<td>0.99</td>
<td>0.74</td>
<td>0.49</td>
<td>0.24</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NER</td>
<td>2</td>
<td>1.75</td>
<td>1.5</td>
<td>1.25</td>
<td>1</td>
<td>0.75</td>
<td>0.5</td>
<td>0.25</td>
<td>0</td>
</tr>
<tr>
<td>SR</td>
<td>2.32</td>
<td>2.07</td>
<td>1.82</td>
<td>1.57</td>
<td>1.32</td>
<td>1.07</td>
<td>0.82</td>
<td>0.57</td>
<td>0.32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region</th>
<th>Average loss for injection/drawal (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>2.28</td>
</tr>
<tr>
<td>WR</td>
<td>1.45</td>
</tr>
<tr>
<td>ER</td>
<td>0.74</td>
</tr>
<tr>
<td>NER</td>
<td>1</td>
</tr>
<tr>
<td>SR</td>
<td>1.32</td>
</tr>
</tbody>
</table>
SIL for different voltage levels and conductor configuration

<table>
<thead>
<tr>
<th>Voltage (KV)</th>
<th>Number & size of conductor</th>
<th>S.I.L (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>765</td>
<td>4x686</td>
<td>2250</td>
</tr>
<tr>
<td>765 Op at 400</td>
<td>4x686</td>
<td>614</td>
</tr>
<tr>
<td>400</td>
<td>2x520</td>
<td>515</td>
</tr>
<tr>
<td>400</td>
<td>4x420</td>
<td>614</td>
</tr>
<tr>
<td>400</td>
<td>3x420</td>
<td>560</td>
</tr>
<tr>
<td>400 Op at 220</td>
<td>2x520</td>
<td>455</td>
</tr>
<tr>
<td>220</td>
<td>420</td>
<td>432</td>
</tr>
<tr>
<td>132</td>
<td>200</td>
<td>50</td>
</tr>
</tbody>
</table>