

Future Ready Networks

Empowering our customers in their energy future

Tom Langstaff, Manager, Networks Planning

13 March 2019

Distributed Energy Resources challenge the traditional network hierarchy,

Growth in the number of solar customers will accelerate...with EV and Battery on the rise

Customers voltage will now <u>rise</u> not just fall

Actual customer experiences

A distribution transformer over four average (non peak) days

Voltage limits to meet Victorian Distribution Code

Rooftop solar PV system sizes are increasing rapidly

Size of solar PV systems installed - 2011v. 2017

■2011 ■2017

Rooftop solar generation does not materially reduce network peak

Impact of rooftop solar PV on network demand

Solar customers (as a group) have a higher peak demand than non-solar

Solar customers v. non-solar customers on a hot day

Solar customers (as a group) typically export during the day

and we are at the cross roads for reverse flows..

we expect large reverse flows of 20 MW by 2025

we expect reverse flows across our network

AusNet Services Zone Substation minimum demands

Customers in rural areas will be the most effected

Integrated HV-LV Analysis of PV-rich Distribution Networks: An AusNet Case Study

Kyriacos Petrou, Luis Ochoa (The University of Melbourne), John Theunissen, Jacqueline Bridge, Justin Harding, Tom Langstaff (AusNet Services)

1. Introduction

The "HV-LV Analysis of Mini Grid Clusters" project was carried out to investigate the impacts of clusters of new PV-ready LV networks (100% PV) on an existing HV feeder.

2. HV – LV Network Modelling

Integrated HV-LV analysis, smart demand and generation data, time-series three-phase analysis.

3. Impact Assessment

Impact assessment carried out for two cases, using data of a summer day with minimum midday demand.

Current (Minimal PV Penetration) HV Feeder State:

Future (50% PV Penetration) HV Feeder State:

4. Potential Solutions

Solutions Assessed	Line Utilization	Voltage Problems	Curtailment
No Solution	142%	9.3%	1.3%
Change OLTC Settings	147%	0%	0.2%
Change Volt- Watt Settings	98.4%	0%	55.9%
Enable Volt-Var Function	143%	1.15%	0.6%
PV Export Limit	99.5%	0%	57.3%
Grid-scale Storage	86.3%	0%	0%

4. Conclusions on Successful Solutions

- **Change Volt-Watt Settings**: High curtailment, requires extensive tuning, unfair curtailment depending on location in the network, uses existing assets.
- **PV export limit**: High curtailment, requires minimal tuning, <u>uses existing assets</u>.
- Grid-scale Storage: No curtailment, requires new assets (expensive).

Thanks for your time

Tom Langstaff

Manager Networks Planning

AusNet Services

Level 30, 2 Southbank Boulevard Southbank Victoria 3006 Australia Tel +61 3 9695 6859 Mobile +61 (0) 438 338 488 tom.langstaff@ausnetservices.com.au www.ausnetservices.com.au

